from sqlalchemy.orm import Session from sqlalchemy import func from datetime import date, timedelta from decimal import Decimal # Import your existing database models from app.models.customer import Customer_estimate_gallons, Customer_Update from app.models.delivery import Delivery from app.models.auto import Auto_Temp # --- Constants for the Model --- # This is a baseline daily usage for homes that use oil for hot water. # A typical value is 0.5 to 1.0 gallons per day. Adjust as needed. HOT_WATER_DAILY_USAGE = Decimal('1.0') # This determines how quickly the K-Factor adjusts. # 0.7 means 70% weight is given to the historical factor and 30% to the new one. # This prevents wild swings from a single unusual delivery period. K_FACTOR_SMOOTHING_WEIGHT = Decimal('0.7') TANK_MAX_FILLS = { 275: 240, 330: 280, 500: 475, 550: 500 } PARTIAL_DELIVERIES = [100, 125, 150, 200] class FuelEstimatorCustomer: def __init__(self, session: Session): self.session = session def _get_weather_for_date(self, target_date: date) -> Auto_Temp | None: """Helper to fetch weather data for a specific date.""" return self.session.query(Auto_Temp).filter(Auto_Temp.todays_date == target_date).first() def _estimate_initial_house_factor(self, customer: Customer_estimate_gallons) -> Decimal: """ Generic function to estimate initial house factor for customers with only one delivery. This can be improved with more sophisticated logic (e.g., averaging similar customers). """ # Default generic house factor: 0.12 gallons per degree day (average based on existing customer data) # This represents typical heating usage and can be adjusted based on future data analysis return Decimal('0.12') def _verify_house_factor_correctness(self, customer: Customer_estimate_gallons) -> bool: """ Verify and correct house_factor based on delivery history. Returns True if correction was made. """ # Count deliveries for this customer delivery_count = self.session.query(func.count(Delivery.id)).filter( Delivery.customer_id == customer.customer_id ).scalar() corrected = False if delivery_count <= 1: # Customers with 0 or 1 delivery should have house_factor = 0.12 (initial average) if customer.house_factor != Decimal('0.12'): print(f"Correcting house_factor for customer {customer.customer_id} from {customer.house_factor} to 0.12 (1 or fewer deliveries)") customer.house_factor = Decimal('0.12') corrected = True # For customers with 2+ deliveries, keep their calculated factor (no correction needed) return corrected def run_daily_update(self): """ Main function to run once per day. It updates the estimated fuel level for all active regular customers. The calling function must commit the session. """ today = date.today() # 1. Check if the update has already run today if self.session.query(Customer_Update).filter(Customer_Update.last_updated == today).first(): print(f"Daily update for {today} has already been completed.") return {"ok": True, "message": "Update already run today."} # 2. Get today's weather data (specifically the Heating Degree Days) todays_weather = self._get_weather_for_date(today) if not todays_weather: print(f"Error: Weather data for {today} not found. Cannot run update.") return {"ok": False, "message": f"Weather data for {today} not found."} # Degree days can't be negative for this calculation. If it's warm, HDD = 0. degree_day = Decimal(max(0, 65 - float(todays_weather.temp_avg))) # 3. Get all active regular customers customer_estimates = self.session.query(Customer_estimate_gallons).filter( Customer_estimate_gallons.auto_status == 1 # Assuming 1 means active ).all() if not customer_estimates: print("No active regular delivery customers found.") return {"ok": True, "message": "No active customers to update."} print(f"Staging daily fuel update for {len(customer_estimates)} customers...") corrections_made = 0 # 4. Loop through each customer and update their fuel level for customer in customer_estimates: # Verify and correct house_factor if needed if self._verify_house_factor_correctness(customer): corrections_made += 1 heating_usage = customer.house_factor * degree_day hot_water_usage = Decimal('0.0') if customer.hot_water_summer == 1: hot_water_usage = HOT_WATER_DAILY_USAGE gallons_used_today = heating_usage + hot_water_usage customer.estimated_gallons_left_prev_day = customer.estimated_gallons_left new_estimated_gallons = customer.estimated_gallons_left - gallons_used_today customer.estimated_gallons_left = max(Decimal('0.0'), new_estimated_gallons) customer.last_updated = today if customer.days_since_last_fill is not None: customer.days_since_last_fill += 1 # 5. Log that today's update is complete new_update_log = Customer_Update(last_updated=today) self.session.add(new_update_log) print("Daily update staged. Awaiting commit.") message = f"Successfully staged updates for {len(customer_estimates)} customers." if corrections_made > 0: message += f" Corrected house factors for {corrections_made} customers." return {"ok": True, "message": message} def refine_factor_after_delivery(self, delivery: Delivery): """ This is the self-correction logic. It recalculates and refines the customer's K-Factor (house_factor) after a delivery. The calling function must commit the session. """ customer = self.session.query(Customer_estimate_gallons).filter( Customer_estimate_gallons.customer_id == delivery.customer_id ).first() if not customer: print(f"Customer {delivery.customer_id} not found.") return if not customer.last_fill: print(f"Setting initial K-Factor for new customer {delivery.customer_id} with only one delivery.") customer.house_factor = self._estimate_initial_house_factor(customer) self._update_tank_after_fill(customer, delivery) return start_date = customer.last_fill end_date = delivery.when_delivered if start_date >= end_date: print(f"Cannot refine K-Factor for customer {delivery.customer_id}: New fill date is not after the last one. Resetting tank only.") self._update_tank_after_fill(customer, delivery) return interval_temps = self.session.query(Auto_Temp).filter( Auto_Temp.todays_date > start_date, Auto_Temp.todays_date <= end_date ).all() total_degree_days = sum(max(0, 65 - float(temp.temp_avg)) for temp in interval_temps) total_hdd = Decimal(total_degree_days) total_hot_water_usage = Decimal('0.0') if customer.hot_water_summer == 1: num_days = (end_date - start_date).days total_hot_water_usage = Decimal(num_days) * HOT_WATER_DAILY_USAGE gallons_for_heating = delivery.gallons_delivered - total_hot_water_usage if gallons_for_heating <= 0 or total_hdd == 0: print(f"Cannot calculate new K-Factor for customer {delivery.customer_id}. (HDD: {total_hdd}, Heating Gallons: {gallons_for_heating}). Resetting tank only.") self._update_tank_after_fill(customer, delivery) return new_k_factor = gallons_for_heating / total_hdd current_k_factor = customer.house_factor smoothed_k_factor = (current_k_factor * K_FACTOR_SMOOTHING_WEIGHT) + (new_k_factor * (Decimal('1.0') - K_FACTOR_SMOOTHING_WEIGHT)) print(f"Refining K-Factor for Customer ID {customer.customer_id}:") print(f" - Old K-Factor: {current_k_factor:.4f}, New Smoothed K-Factor: {smoothed_k_factor:.4f}") customer.house_factor = smoothed_k_factor self._update_tank_after_fill(customer, delivery) print(f"K-Factor and tank status for Customer {customer.customer_id} staged for update.") def _update_tank_after_fill(self, customer: Customer_estimate_gallons, delivery: Delivery): """Helper to update customer tank status after a fill-up or partial delivery.""" customer.last_fill = delivery.when_delivered customer.days_since_last_fill = 0 # Determine max fill capacity if customer.tank_size and Decimal(customer.tank_size) > 0: tank_size = float(Decimal(customer.tank_size)) max_fill = TANK_MAX_FILLS.get(tank_size, tank_size) else: # Default to legal max for common tank size (275 gallons = 240) max_fill = 240.0 # Check if this is a partial delivery if float(delivery.gallons_delivered) in PARTIAL_DELIVERIES: # Partial delivery: add to current level, cap at max_fill customer.estimated_gallons_left += delivery.gallons_delivered customer.estimated_gallons_left = min(customer.estimated_gallons_left, Decimal(str(max_fill))) else: # Full delivery: set to max_fill customer.estimated_gallons_left = Decimal(str(max_fill)) # The previous day's value should match the new value on a fill day. customer.estimated_gallons_left_prev_day = customer.estimated_gallons_left customer.last_updated = date.today() customer.auto_status = 1 # Reactivate the customer